Skip to content

vllm.model_executor.models.siglip

Implementation of SiglipVisionModel intended to be only used within a vision language model.

_POOLING_TYPE_TO_STRATEGY module-attribute

_POOLING_TYPE_TO_STRATEGY: dict[
    str, VisionFeatureSelectStrategyStr
] = {"MEAN": "full", "ALL": "full", "CLS": "class"}

SiglipAttention

Bases: Module

Source code in vllm/model_executor/models/siglip.py
class SiglipAttention(nn.Module):
    def __init__(
        self,
        config: SiglipVisionConfig | SiglipTextConfig,
        quant_config: QuantizationConfig | None = None,
        *,
        prefix: str = "",
    ) -> None:
        super().__init__()

        self.config = config
        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_heads
        if self.head_dim * self.num_heads != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got "
                "`embed_dim`: {self.embed_dim} and `num_heads`:"
                f" {self.num_heads})."
            )

        self.scale = self.head_dim**-0.5
        self.dropout = config.attention_dropout
        self.qkv_proj = QKVParallelLinear(
            hidden_size=self.embed_dim,
            head_size=self.head_dim,
            total_num_heads=self.num_heads,
            quant_config=quant_config,
            prefix=f"{prefix}.qkv_proj",
        )

        self.out_proj = RowParallelLinear(
            input_size=self.embed_dim,
            output_size=self.embed_dim,
            quant_config=quant_config,
            prefix=f"{prefix}.out_proj",
        )

        self.tp_size = get_tensor_model_parallel_world_size()
        self.num_heads_per_partition = divide(self.num_heads, self.tp_size)

        self.attn = MultiHeadAttention(
            self.num_heads_per_partition, self.head_dim, self.scale
        )

    def forward(
        self,
        hidden_states: torch.Tensor,
    ) -> tuple[torch.Tensor, None]:
        """Input shape: Batch x Time x Channel"""
        qkv_states, _ = self.qkv_proj(hidden_states)
        query_states, key_states, value_states = qkv_states.chunk(3, dim=-1)

        needs_unsqueeze = query_states.ndim == 2
        if needs_unsqueeze:
            query_states, key_states, value_states = (
                query_states.unsqueeze(0),
                key_states.unsqueeze(0),
                value_states.unsqueeze(0),
            )

        out = self.attn(query_states, key_states, value_states)

        if needs_unsqueeze:
            out, query_states, key_states, value_states = (
                out.squeeze(0),
                query_states.squeeze(0),
                key_states.squeeze(0),
                value_states.squeeze(0),
            )

        attn_output, _ = self.out_proj(out)

        return attn_output, None

attn instance-attribute

attn = MultiHeadAttention(
    num_heads_per_partition, head_dim, scale
)

config instance-attribute

config = config

dropout instance-attribute

dropout = attention_dropout

embed_dim instance-attribute

embed_dim = hidden_size

head_dim instance-attribute

head_dim = embed_dim // num_heads

num_heads instance-attribute

num_heads = num_attention_heads

num_heads_per_partition instance-attribute

num_heads_per_partition = divide(num_heads, tp_size)

out_proj instance-attribute

out_proj = RowParallelLinear(
    input_size=embed_dim,
    output_size=embed_dim,
    quant_config=quant_config,
    prefix=f"{prefix}.out_proj",
)

qkv_proj instance-attribute

qkv_proj = QKVParallelLinear(
    hidden_size=embed_dim,
    head_size=head_dim,
    total_num_heads=num_heads,
    quant_config=quant_config,
    prefix=f"{prefix}.qkv_proj",
)

scale instance-attribute

scale = head_dim ** -0.5

tp_size instance-attribute

__init__

__init__(
    config: SiglipVisionConfig | SiglipTextConfig,
    quant_config: QuantizationConfig | None = None,
    *,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/siglip.py
def __init__(
    self,
    config: SiglipVisionConfig | SiglipTextConfig,
    quant_config: QuantizationConfig | None = None,
    *,
    prefix: str = "",
) -> None:
    super().__init__()

    self.config = config
    self.embed_dim = config.hidden_size
    self.num_heads = config.num_attention_heads
    self.head_dim = self.embed_dim // self.num_heads
    if self.head_dim * self.num_heads != self.embed_dim:
        raise ValueError(
            f"embed_dim must be divisible by num_heads (got "
            "`embed_dim`: {self.embed_dim} and `num_heads`:"
            f" {self.num_heads})."
        )

    self.scale = self.head_dim**-0.5
    self.dropout = config.attention_dropout
    self.qkv_proj = QKVParallelLinear(
        hidden_size=self.embed_dim,
        head_size=self.head_dim,
        total_num_heads=self.num_heads,
        quant_config=quant_config,
        prefix=f"{prefix}.qkv_proj",
    )

    self.out_proj = RowParallelLinear(
        input_size=self.embed_dim,
        output_size=self.embed_dim,
        quant_config=quant_config,
        prefix=f"{prefix}.out_proj",
    )

    self.tp_size = get_tensor_model_parallel_world_size()
    self.num_heads_per_partition = divide(self.num_heads, self.tp_size)

    self.attn = MultiHeadAttention(
        self.num_heads_per_partition, self.head_dim, self.scale
    )

forward

forward(hidden_states: Tensor) -> tuple[Tensor, None]

Input shape: Batch x Time x Channel

Source code in vllm/model_executor/models/siglip.py
def forward(
    self,
    hidden_states: torch.Tensor,
) -> tuple[torch.Tensor, None]:
    """Input shape: Batch x Time x Channel"""
    qkv_states, _ = self.qkv_proj(hidden_states)
    query_states, key_states, value_states = qkv_states.chunk(3, dim=-1)

    needs_unsqueeze = query_states.ndim == 2
    if needs_unsqueeze:
        query_states, key_states, value_states = (
            query_states.unsqueeze(0),
            key_states.unsqueeze(0),
            value_states.unsqueeze(0),
        )

    out = self.attn(query_states, key_states, value_states)

    if needs_unsqueeze:
        out, query_states, key_states, value_states = (
            out.squeeze(0),
            query_states.squeeze(0),
            key_states.squeeze(0),
            value_states.squeeze(0),
        )

    attn_output, _ = self.out_proj(out)

    return attn_output, None

SiglipDummyInputsBuilder

Bases: BaseDummyInputsBuilder[SiglipProcessingInfo]

Source code in vllm/model_executor/models/siglip.py
class SiglipDummyInputsBuilder(BaseDummyInputsBuilder[SiglipProcessingInfo]):
    def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
        return ""

    def get_dummy_mm_data(
        self,
        seq_len: int,
        mm_counts: Mapping[str, int],
        mm_options: Mapping[str, BaseDummyOptions] | None = None,
    ) -> MultiModalDataDict:
        num_images = mm_counts.get("image", 0)

        target_width, target_height = self.info.get_image_size_with_most_features()

        image_overrides = mm_options.get("image") if mm_options else None

        return {
            "image": self._get_dummy_images(
                width=target_width,
                height=target_height,
                num_images=num_images,
                overrides=image_overrides,
            )
        }

get_dummy_mm_data

get_dummy_mm_data(
    seq_len: int,
    mm_counts: Mapping[str, int],
    mm_options: Mapping[str, BaseDummyOptions]
    | None = None,
) -> MultiModalDataDict
Source code in vllm/model_executor/models/siglip.py
def get_dummy_mm_data(
    self,
    seq_len: int,
    mm_counts: Mapping[str, int],
    mm_options: Mapping[str, BaseDummyOptions] | None = None,
) -> MultiModalDataDict:
    num_images = mm_counts.get("image", 0)

    target_width, target_height = self.info.get_image_size_with_most_features()

    image_overrides = mm_options.get("image") if mm_options else None

    return {
        "image": self._get_dummy_images(
            width=target_width,
            height=target_height,
            num_images=num_images,
            overrides=image_overrides,
        )
    }

get_dummy_text

get_dummy_text(mm_counts: Mapping[str, int]) -> str
Source code in vllm/model_executor/models/siglip.py
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
    return ""

SiglipEmbeddingModel

Bases: Module, SupportsMultiModal, SupportsQuant

Source code in vllm/model_executor/models/siglip.py
@default_pooling_type("CLS")
@MULTIMODAL_REGISTRY.register_processor(
    SiglipMultiModalProcessor,
    info=SiglipProcessingInfo,
    dummy_inputs=SiglipDummyInputsBuilder,
)
class SiglipEmbeddingModel(nn.Module, SupportsMultiModal, SupportsQuant):
    is_pooling_model = True

    packed_modules_mapping = {"qkv_proj": ["q_proj", "k_proj", "v_proj"]}
    merge_by_field_config = True

    @classmethod
    def get_placeholder_str(cls, modality: str, i: int) -> str | None:
        if modality.startswith("image"):
            return None

        raise ValueError("Only image modality is supported")

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()

        config: SiglipConfig = vllm_config.model_config.hf_config
        quant_config = vllm_config.quant_config
        multimodal_config = vllm_config.model_config.multimodal_config
        self.config = config
        self.multimodal_config = multimodal_config

        if hasattr(config, "num_labels"):
            config.num_labels = 0

        text_config = config.text_config
        vision_config = config.vision_config

        self.text_embed_dim = text_config.hidden_size
        self.vision_embed_dim = vision_config.hidden_size

        self.text_model = SiglipTextTransformer(
            text_config,
            quant_config=quant_config,
            prefix=maybe_prefix(prefix, "text_model"),
        )
        self.vision_model = SiglipVisionTransformer(
            vision_config,
            quant_config=quant_config,
            prefix=maybe_prefix(prefix, "vision_model"),
        )

        self.text_projection_size = text_config.projection_size

        pooler_config = vllm_config.model_config.pooler_config
        assert pooler_config is not None
        self.pooler_config = pooler_config

        self.pooler = DispatchPooler(
            {
                "token_embed": Pooler.for_token_embed(pooler_config),
                "embed": Pooler.for_embed(pooler_config),
            }
        )

        self._is_text_input = True

    def get_text_features(
        self,
        input_ids: torch.Tensor | None,
        position_ids: torch.Tensor,
        inputs_embeds: torch.Tensor | None = None,
    ) -> torch.Tensor:
        last_hidden_state = self.text_model(
            input_ids=input_ids,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
        )
        text_features = self.text_model.head(last_hidden_state)
        # Flip to extract CLS token (first token after reversal) for pooling
        text_features = text_features.flip(0)
        return text_features

    def get_image_features(
        self,
        pixel_values: torch.Tensor,
        feature_select_strategy: VisionFeatureSelectStrategy | None = None,
    ) -> torch.Tensor:
        if feature_select_strategy is None:
            feature_select_strategy = _get_vision_feature_select_strategy(
                self.pooler_config.pooling_type
            )

        pooled_output = self.vision_model(
            pixel_values=pixel_values,
            select_layers=None,
            feature_select_strategy=feature_select_strategy,
        )

        return pooled_output

    def _parse_and_validate_image_input(
        self, **kwargs: object
    ) -> SiglipImagePixelInputs | None:
        pixel_values = kwargs.pop("pixel_values", None)
        if pixel_values is None:
            return None

        expected_h = expected_w = self.config.vision_config.image_size
        return SiglipImagePixelInputs(
            type="pixel_values",
            data=pixel_values,
            resolve_bindings={"h": expected_h, "w": expected_w},
        )

    def _process_image_inputs(self, inputs: SiglipImagePixelInputs) -> torch.Tensor:
        pixel_values = inputs["data"]

        return self.get_image_features(pixel_values)

    def get_language_model(self) -> torch.nn.Module:
        return self.text_model

    def get_input_embeddings(
        self,
        input_ids: torch.Tensor,
        multimodal_embeddings: MultiModalEmbeddings | None = None,
        *,
        is_multimodal: torch.Tensor | None = None,
        handle_oov_mm_token: bool = False,
    ) -> torch.Tensor:
        self._is_text_input = (
            multimodal_embeddings is None or len(multimodal_embeddings) == 0
        )

        if multimodal_embeddings is None or is_multimodal is None:
            return super().get_input_embeddings(input_ids)

        return super().get_input_embeddings(
            input_ids,
            multimodal_embeddings=multimodal_embeddings,
            is_multimodal=is_multimodal,
            handle_oov_mm_token=handle_oov_mm_token,
        )

    def get_multimodal_embeddings(self, **kwargs: object) -> MultiModalEmbeddings:
        image_input = self._parse_and_validate_image_input(**kwargs)
        if image_input is None:
            return []

        vision_embeddings = self._process_image_inputs(image_input)
        return vision_embeddings

    def forward(
        self,
        input_ids: torch.Tensor | None,
        positions: torch.Tensor,
        intermediate_tensors: IntermediateTensors | None = None,
        inputs_embeds: torch.Tensor | None = None,
        **kwargs: object,
    ) -> torch.Tensor:
        if intermediate_tensors is not None:
            raise RuntimeError("PP is not supported for this model")

        # Multimodal inputs (image embeddings)
        if not self._is_text_input:
            return inputs_embeds

        return self.get_text_features(input_ids, positions, inputs_embeds)

    def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
        loader = AutoWeightsLoader(
            self,
            skip_substrs=[".position_ids"],
            ignore_unexpected_prefixes=["logit_scale.", "logit_bias."],
        )

        return loader.load_weights(weights)

_is_text_input instance-attribute

_is_text_input = True

config instance-attribute

config = config

is_pooling_model class-attribute instance-attribute

is_pooling_model = True

merge_by_field_config class-attribute instance-attribute

merge_by_field_config = True

multimodal_config instance-attribute

multimodal_config = multimodal_config

packed_modules_mapping class-attribute instance-attribute

packed_modules_mapping = {
    "qkv_proj": ["q_proj", "k_proj", "v_proj"]
}

pooler instance-attribute

pooler = DispatchPooler(
    {
        "token_embed": for_token_embed(pooler_config),
        "embed": for_embed(pooler_config),
    }
)

pooler_config instance-attribute

pooler_config = pooler_config

text_embed_dim instance-attribute

text_embed_dim = hidden_size

text_model instance-attribute

text_model = SiglipTextTransformer(
    text_config,
    quant_config=quant_config,
    prefix=maybe_prefix(prefix, "text_model"),
)

text_projection_size instance-attribute

text_projection_size = projection_size

vision_embed_dim instance-attribute

vision_embed_dim = hidden_size

vision_model instance-attribute

vision_model = SiglipVisionTransformer(
    vision_config,
    quant_config=quant_config,
    prefix=maybe_prefix(prefix, "vision_model"),
)

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/siglip.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()

    config: SiglipConfig = vllm_config.model_config.hf_config
    quant_config = vllm_config.quant_config
    multimodal_config = vllm_config.model_config.multimodal_config
    self.config = config
    self.multimodal_config = multimodal_config

    if hasattr(config, "num_labels"):
        config.num_labels = 0

    text_config = config.text_config
    vision_config = config.vision_config

    self.text_embed_dim = text_config.hidden_size
    self.vision_embed_dim = vision_config.hidden_size

    self.text_model = SiglipTextTransformer(
        text_config,
        quant_config=quant_config,
        prefix=maybe_prefix(prefix, "text_model"),
    )
    self.vision_model = SiglipVisionTransformer(
        vision_config,
        quant_config=quant_config,
        prefix=maybe_prefix(prefix, "vision_model"),
    )

    self.text_projection_size = text_config.projection_size

    pooler_config = vllm_config.model_config.pooler_config
    assert pooler_config is not None
    self.pooler_config = pooler_config

    self.pooler = DispatchPooler(
        {
            "token_embed": Pooler.for_token_embed(pooler_config),
            "embed": Pooler.for_embed(pooler_config),
        }
    )

    self._is_text_input = True

_parse_and_validate_image_input

_parse_and_validate_image_input(
    **kwargs: object,
) -> SiglipImagePixelInputs | None
Source code in vllm/model_executor/models/siglip.py
def _parse_and_validate_image_input(
    self, **kwargs: object
) -> SiglipImagePixelInputs | None:
    pixel_values = kwargs.pop("pixel_values", None)
    if pixel_values is None:
        return None

    expected_h = expected_w = self.config.vision_config.image_size
    return SiglipImagePixelInputs(
        type="pixel_values",
        data=pixel_values,
        resolve_bindings={"h": expected_h, "w": expected_w},
    )

_process_image_inputs

_process_image_inputs(
    inputs: SiglipImagePixelInputs,
) -> Tensor
Source code in vllm/model_executor/models/siglip.py
def _process_image_inputs(self, inputs: SiglipImagePixelInputs) -> torch.Tensor:
    pixel_values = inputs["data"]

    return self.get_image_features(pixel_values)

forward

forward(
    input_ids: Tensor | None,
    positions: Tensor,
    intermediate_tensors: IntermediateTensors | None = None,
    inputs_embeds: Tensor | None = None,
    **kwargs: object,
) -> Tensor
Source code in vllm/model_executor/models/siglip.py
def forward(
    self,
    input_ids: torch.Tensor | None,
    positions: torch.Tensor,
    intermediate_tensors: IntermediateTensors | None = None,
    inputs_embeds: torch.Tensor | None = None,
    **kwargs: object,
) -> torch.Tensor:
    if intermediate_tensors is not None:
        raise RuntimeError("PP is not supported for this model")

    # Multimodal inputs (image embeddings)
    if not self._is_text_input:
        return inputs_embeds

    return self.get_text_features(input_ids, positions, inputs_embeds)

get_image_features

get_image_features(
    pixel_values: Tensor,
    feature_select_strategy: VisionFeatureSelectStrategy
    | None = None,
) -> Tensor
Source code in vllm/model_executor/models/siglip.py
def get_image_features(
    self,
    pixel_values: torch.Tensor,
    feature_select_strategy: VisionFeatureSelectStrategy | None = None,
) -> torch.Tensor:
    if feature_select_strategy is None:
        feature_select_strategy = _get_vision_feature_select_strategy(
            self.pooler_config.pooling_type
        )

    pooled_output = self.vision_model(
        pixel_values=pixel_values,
        select_layers=None,
        feature_select_strategy=feature_select_strategy,
    )

    return pooled_output

get_input_embeddings

get_input_embeddings(
    input_ids: Tensor,
    multimodal_embeddings: MultiModalEmbeddings
    | None = None,
    *,
    is_multimodal: Tensor | None = None,
    handle_oov_mm_token: bool = False,
) -> Tensor
Source code in vllm/model_executor/models/siglip.py
def get_input_embeddings(
    self,
    input_ids: torch.Tensor,
    multimodal_embeddings: MultiModalEmbeddings | None = None,
    *,
    is_multimodal: torch.Tensor | None = None,
    handle_oov_mm_token: bool = False,
) -> torch.Tensor:
    self._is_text_input = (
        multimodal_embeddings is None or len(multimodal_embeddings) == 0
    )

    if multimodal_embeddings is None or is_multimodal is None:
        return super().get_input_embeddings(input_ids)

    return super().get_input_embeddings(
        input_ids,
        multimodal_embeddings=multimodal_embeddings,
        is_multimodal=is_multimodal,
        handle_oov_mm_token=handle_oov_mm_token,
    )

get_language_model

get_language_model() -> Module
Source code in vllm/model_executor/models/siglip.py
def get_language_model(self) -> torch.nn.Module:
    return self.text_model

get_multimodal_embeddings

get_multimodal_embeddings(
    **kwargs: object,
) -> MultiModalEmbeddings
Source code in vllm/model_executor/models/siglip.py
def get_multimodal_embeddings(self, **kwargs: object) -> MultiModalEmbeddings:
    image_input = self._parse_and_validate_image_input(**kwargs)
    if image_input is None:
        return []

    vision_embeddings = self._process_image_inputs(image_input)
    return vision_embeddings

get_placeholder_str classmethod

get_placeholder_str(modality: str, i: int) -> str | None
Source code in vllm/model_executor/models/siglip.py
@classmethod
def get_placeholder_str(cls, modality: str, i: int) -> str | None:
    if modality.startswith("image"):
        return None

    raise ValueError("Only image modality is supported")

get_text_features

get_text_features(
    input_ids: Tensor | None,
    position_ids: Tensor,
    inputs_embeds: Tensor | None = None,
) -> Tensor
Source code in vllm/model_executor/models/siglip.py
def get_text_features(
    self,
    input_ids: torch.Tensor | None,
    position_ids: torch.Tensor,
    inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor:
    last_hidden_state = self.text_model(
        input_ids=input_ids,
        position_ids=position_ids,
        inputs_embeds=inputs_embeds,
    )
    text_features = self.text_model.head(last_hidden_state)
    # Flip to extract CLS token (first token after reversal) for pooling
    text_features = text_features.flip(0)
    return text_features

load_weights

load_weights(weights: Iterable[tuple[str, Tensor]])
Source code in vllm/model_executor/models/siglip.py
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
    loader = AutoWeightsLoader(
        self,
        skip_substrs=[".position_ids"],
        ignore_unexpected_prefixes=["logit_scale.", "logit_bias."],
    )

    return loader.load_weights(weights)

SiglipEncoder

Bases: Module

Source code in vllm/model_executor/models/siglip.py
class SiglipEncoder(nn.Module):
    def __init__(
        self,
        config: SiglipVisionConfig | SiglipTextConfig,
        quant_config: QuantizationConfig | None = None,
        num_hidden_layers_override: int | None = None,
        *,
        prefix: str = "",
    ) -> None:
        super().__init__()

        self.config = config

        if num_hidden_layers_override is None:
            num_hidden_layers = config.num_hidden_layers
        else:
            num_hidden_layers = num_hidden_layers_override

        self.layers = nn.ModuleList(
            [
                SiglipEncoderLayer(
                    config,
                    quant_config=quant_config,
                    prefix=f"{prefix}.layers.{layer_idx}",
                )
                for layer_idx in range(num_hidden_layers)
            ]
        )

    def forward(
        self,
        inputs_embeds: torch.Tensor,
        return_all_hidden_states: bool,
    ) -> torch.Tensor | list[torch.Tensor]:
        hidden_states_pool = [inputs_embeds]
        hidden_states = inputs_embeds

        for encoder_layer in self.layers:
            hidden_states, _ = encoder_layer(hidden_states)
            if return_all_hidden_states:
                hidden_states_pool.append(hidden_states)
        # If we have multiple feature sample layers, we return all hidden
        # states in order and grab the ones we need by index.
        if return_all_hidden_states:
            return hidden_states_pool
        return hidden_states

config instance-attribute

config = config

layers instance-attribute

layers = ModuleList(
    [
        (
            SiglipEncoderLayer(
                config,
                quant_config=quant_config,
                prefix=f"{prefix}.layers.{layer_idx}",
            )
        )
        for layer_idx in (range(num_hidden_layers))
    ]
)

__init__

__init__(
    config: SiglipVisionConfig | SiglipTextConfig,
    quant_config: QuantizationConfig | None = None,
    num_hidden_layers_override: int | None = None,
    *,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/siglip.py
def __init__(
    self,
    config: SiglipVisionConfig | SiglipTextConfig,
    quant_config: QuantizationConfig | None = None,
    num_hidden_layers_override: int | None = None,
    *,
    prefix: str = "",
) -> None:
    super().__init__()

    self.config = config

    if num_hidden_layers_override is None:
        num_hidden_layers = config.num_hidden_layers
    else:
        num_hidden_layers = num_hidden_layers_override

    self.layers = nn.ModuleList(
        [
            SiglipEncoderLayer(
                config,
                quant_config=quant_config,
                prefix=f"{prefix}.layers.{layer_idx}",
            )
            for layer_idx in range(num_hidden_layers)
        ]
    )

forward

forward(
    inputs_embeds: Tensor, return_all_hidden_states: bool
) -> Tensor | list[Tensor]
Source code in vllm/model_executor/models/siglip.py
def forward(
    self,
    inputs_embeds: torch.Tensor,
    return_all_hidden_states: bool,
) -> torch.Tensor | list[torch.Tensor]:
    hidden_states_pool = [inputs_embeds]
    hidden_states = inputs_embeds

    for encoder_layer in self.layers:
        hidden_states, _ = encoder_layer(hidden_states)
        if return_all_hidden_states:
            hidden_states_pool.append(hidden_states)
    # If we have multiple feature sample layers, we return all hidden
    # states in order and grab the ones we need by index.
    if return_all_hidden_states:
        return hidden_states_pool
    return hidden_states

SiglipEncoderInfo

Bases: VisionEncoderInfo[SiglipVisionConfig]

Source code in vllm/model_executor/models/siglip.py
class SiglipEncoderInfo(VisionEncoderInfo[SiglipVisionConfig]):
    def get_num_image_tokens(
        self,
        *,
        image_width: int,
        image_height: int,
    ) -> int:
        return self.get_patch_grid_length() ** 2

    def get_image_size(self) -> int:
        return self.vision_config.image_size

    def get_patch_size(self) -> int:
        return self.vision_config.patch_size

    def get_patch_grid_length(self) -> int:
        image_size, patch_size = self.get_image_size(), self.get_patch_size()
        return image_size // patch_size

get_image_size

get_image_size() -> int
Source code in vllm/model_executor/models/siglip.py
def get_image_size(self) -> int:
    return self.vision_config.image_size

get_num_image_tokens

get_num_image_tokens(
    *, image_width: int, image_height: int
) -> int
Source code in vllm/model_executor/models/siglip.py
def get_num_image_tokens(
    self,
    *,
    image_width: int,
    image_height: int,
) -> int:
    return self.get_patch_grid_length() ** 2

get_patch_grid_length

get_patch_grid_length() -> int
Source code in vllm/model_executor/models/siglip.py
def get_patch_grid_length(self) -> int:
    image_size, patch_size = self.get_image_size(), self.get_patch_size()
    return image_size // patch_size

get_patch_size

get_patch_size() -> int
Source code in vllm/model_executor/models/siglip.py
def get_patch_size(self) -> int:
    return self.vision_config.patch_size

SiglipEncoderLayer

Bases: Module

Source code in vllm/model_executor/models/siglip.py
class SiglipEncoderLayer(nn.Module):
    def __init__(
        self,
        config: SiglipVisionConfig | SiglipTextConfig,
        quant_config: QuantizationConfig | None = None,
        *,
        prefix: str = "",
    ) -> None:
        super().__init__()

        self.embed_dim = config.hidden_size

        self.self_attn = SiglipAttention(
            config,
            quant_config=quant_config,
            prefix=f"{prefix}.self_attn",
        )
        self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
        self.mlp = SiglipMLP(
            config,
            quant_config=quant_config,
            prefix=f"{prefix}.mlp",
        )
        self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
    ) -> tuple[torch.Tensor, None]:
        residual = hidden_states

        hidden_states = self.layer_norm1(hidden_states)
        hidden_states, _ = self.self_attn(hidden_states=hidden_states)
        hidden_states += residual

        residual = hidden_states
        hidden_states = self.layer_norm2(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states += residual

        return hidden_states, None

embed_dim instance-attribute

embed_dim = hidden_size

layer_norm1 instance-attribute

layer_norm1 = LayerNorm(embed_dim, eps=layer_norm_eps)

layer_norm2 instance-attribute

layer_norm2 = LayerNorm(embed_dim, eps=layer_norm_eps)

mlp instance-attribute

mlp = SiglipMLP(
    config,
    quant_config=quant_config,
    prefix=f"{prefix}.mlp",
)

self_attn instance-attribute

self_attn = SiglipAttention(
    config,
    quant_config=quant_config,
    prefix=f"{prefix}.self_attn",
)

__init__

__init__(
    config: SiglipVisionConfig | SiglipTextConfig,
    quant_config: QuantizationConfig | None = None,
    *,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/siglip.py
def __init__(
    self,
    config: SiglipVisionConfig | SiglipTextConfig,
    quant_config: QuantizationConfig | None = None,
    *,
    prefix: str = "",
) -> None:
    super().__init__()

    self.embed_dim = config.hidden_size

    self.self_attn = SiglipAttention(
        config,
        quant_config=quant_config,
        prefix=f"{prefix}.self_attn",
    )
    self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
    self.mlp = SiglipMLP(
        config,
        quant_config=quant_config,
        prefix=f"{prefix}.mlp",
    )
    self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)

forward

forward(hidden_states: Tensor) -> tuple[Tensor, None]
Source code in vllm/model_executor/models/siglip.py
def forward(
    self,
    hidden_states: torch.Tensor,
) -> tuple[torch.Tensor, None]:
    residual = hidden_states

    hidden_states = self.layer_norm1(hidden_states)
    hidden_states, _ = self.self_attn(hidden_states=hidden_states)
    hidden_states += residual

    residual = hidden_states
    hidden_states = self.layer_norm2(hidden_states)
    hidden_states = self.mlp(hidden_states)
    hidden_states += residual

    return hidden_states, None

SiglipImagePixelInputs

Bases: TensorSchema

Dimensions
  • bn: Batch size * number of images
  • c: Number of channels (3)
  • h: Height of each image
  • w: Width of each image
Source code in vllm/model_executor/models/siglip.py
class SiglipImagePixelInputs(TensorSchema):
    """
    Dimensions:
        - bn: Batch size * number of images
        - c: Number of channels (3)
        - h: Height of each image
        - w: Width of each image
    """

    type: Literal["pixel_values"]
    data: Annotated[torch.Tensor, TensorShape("bn", 3, "h", "w")]

data instance-attribute

data: Annotated[Tensor, TensorShape(bn, 3, h, w)]

type instance-attribute

type: Literal['pixel_values']

SiglipMLP

Bases: Module

Source code in vllm/model_executor/models/siglip.py
class SiglipMLP(nn.Module):
    def __init__(
        self,
        config: SiglipVisionConfig | SiglipTextConfig,
        quant_config: QuantizationConfig | None = None,
        prefix: str = "",
    ) -> None:
        super().__init__()

        self.config = config
        self.activation_fn = get_act_fn(config.hidden_act)
        # Special handling for BNB and torchao quantization
        if quant_config and quant_config.get_name() in ["bitsandbytes", "torchao"]:
            quantizable = True
        else:
            # For other quantization, we require the hidden size to be a
            # multiple of 64
            quantizable = (
                config.hidden_size % 64 == 0 and config.intermediate_size % 64 == 0
            )
        self.fc1 = ColumnParallelLinear(
            config.hidden_size,
            config.intermediate_size,
            quant_config=quant_config if quantizable else None,
            prefix=f"{prefix}.fc1",
        )
        self.fc2 = RowParallelLinear(
            config.intermediate_size,
            config.hidden_size,
            quant_config=quant_config if quantizable else None,
            prefix=f"{prefix}.fc2",
        )

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states, _ = self.fc1(hidden_states)
        hidden_states = self.activation_fn(hidden_states)
        hidden_states, _ = self.fc2(hidden_states)
        return hidden_states

activation_fn instance-attribute

activation_fn = get_act_fn(hidden_act)

config instance-attribute

config = config

fc1 instance-attribute

fc1 = ColumnParallelLinear(
    hidden_size,
    intermediate_size,
    quant_config=quant_config if quantizable else None,
    prefix=f"{prefix}.fc1",
)

fc2 instance-attribute

fc2 = RowParallelLinear(
    intermediate_size,
    hidden_size,
    quant_config=quant_config if quantizable else None,
    prefix=f"{prefix}.fc2",
)

__init__

__init__(
    config: SiglipVisionConfig | SiglipTextConfig,
    quant_config: QuantizationConfig | None = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/siglip.py
def __init__(
    self,
    config: SiglipVisionConfig | SiglipTextConfig,
    quant_config: QuantizationConfig | None = None,
    prefix: str = "",
) -> None:
    super().__init__()

    self.config = config
    self.activation_fn = get_act_fn(config.hidden_act)
    # Special handling for BNB and torchao quantization
    if quant_config and quant_config.get_name() in ["bitsandbytes", "torchao"]:
        quantizable = True
    else:
        # For other quantization, we require the hidden size to be a
        # multiple of 64
        quantizable = (
            config.hidden_size % 64 == 0 and config.intermediate_size % 64 == 0
        )
    self.fc1 = ColumnParallelLinear(
        config.hidden_size,
        config.intermediate_size,
        quant_config=quant_config if quantizable else None,
        prefix=f"{prefix}.fc1",
    )
    self.fc2 = RowParallelLinear(
        config.intermediate_size,
        config.hidden_size,
        quant_config=quant_config if quantizable else None,
        prefix=f"{prefix}.fc2",
    )

forward

forward(hidden_states: Tensor) -> Tensor
Source code in vllm/model_executor/models/siglip.py
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
    hidden_states, _ = self.fc1(hidden_states)
    hidden_states = self.activation_fn(hidden_states)
    hidden_states, _ = self.fc2(hidden_states)
    return hidden_states

SiglipMultiModalProcessor

Bases: BaseMultiModalProcessor[SiglipProcessingInfo]

Source code in vllm/model_executor/models/siglip.py
class SiglipMultiModalProcessor(BaseMultiModalProcessor[SiglipProcessingInfo]):
    @cached_property
    def image_token_id(self) -> int:
        tokenizer = self.info.get_tokenizer()
        dummy_token_id = 0

        assert dummy_token_id not in tokenizer.all_special_ids

        return dummy_token_id

    def apply(
        self,
        prompt: str | list[int],
        mm_data: MultiModalDataDict,
        hf_processor_mm_kwargs: Mapping[str, object],
        tokenization_kwargs: Mapping[str, object] | None = None,
        *,
        mm_uuids: MultiModalUUIDDict | None = None,
    ) -> MultiModalInputs:
        if prompt and mm_data:
            raise ValueError(
                "Siglip accepts text-only or image-only inputs, not both! "
                "Image-only inputs means passing an image with an empty text "
                "prompt."
            )

        if mm_data:
            # For multi-modal data, the prompt after processing should
            # only contain the image token
            tokenization_kwargs = {
                **(tokenization_kwargs or {}),
                "add_special_tokens": False,
            }

        return super().apply(
            prompt=prompt,
            mm_data=mm_data,
            hf_processor_mm_kwargs=hf_processor_mm_kwargs,
            tokenization_kwargs=tokenization_kwargs,
            mm_uuids=mm_uuids,
        )

    def _hf_processor_applies_updates(
        self,
        prompt_text: str,
        mm_items: MultiModalDataItems,
        hf_processor_mm_kwargs: Mapping[str, object],
        tokenization_kwargs: Mapping[str, object],
    ) -> bool:
        return False

    def _get_mm_fields_config(
        self,
        hf_inputs: BatchFeature,
        hf_processor_mm_kwargs: Mapping[str, object],
    ) -> Mapping[str, MultiModalFieldConfig]:
        return dict(pixel_values=MultiModalFieldConfig.batched("image"))

    def _get_prompt_updates(
        self,
        mm_items: MultiModalDataItems,
        hf_processor_mm_kwargs: Mapping[str, object],
        out_mm_kwargs: MultiModalKwargsItems,
    ) -> list[PromptUpdate]:
        image_token_id = self.image_token_id

        def get_replacement(item_idx: int):
            images = mm_items.get_items("image", ImageProcessorItems)
            image_size = images.get_image_size(item_idx)

            num_image_tokens = self.info.get_num_image_tokens(
                image_width=image_size.width, image_height=image_size.height
            )
            return [image_token_id] * num_image_tokens

        return [
            PromptReplacement(
                modality="image",
                target=PromptIndexTargets.start(),
                replacement=get_replacement,
            ),
        ]

image_token_id cached property

image_token_id: int

_get_mm_fields_config

_get_mm_fields_config(
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]
Source code in vllm/model_executor/models/siglip.py
def _get_mm_fields_config(
    self,
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
    return dict(pixel_values=MultiModalFieldConfig.batched("image"))

_get_prompt_updates

_get_prompt_updates(
    mm_items: MultiModalDataItems,
    hf_processor_mm_kwargs: Mapping[str, object],
    out_mm_kwargs: MultiModalKwargsItems,
) -> list[PromptUpdate]
Source code in vllm/model_executor/models/siglip.py
def _get_prompt_updates(
    self,
    mm_items: MultiModalDataItems,
    hf_processor_mm_kwargs: Mapping[str, object],
    out_mm_kwargs: MultiModalKwargsItems,
) -> list[PromptUpdate]:
    image_token_id = self.image_token_id

    def get_replacement(item_idx: int):
        images = mm_items.get_items("image", ImageProcessorItems)
        image_size = images.get_image_size(item_idx)

        num_image_tokens = self.info.get_num_image_tokens(
            image_width=image_size.width, image_height=image_size.height
        )
        return [image_token_id] * num_image_tokens

    return [
        PromptReplacement(
            modality="image",
            target=PromptIndexTargets.start(),
            replacement=get_replacement,
        ),
    ]

_hf_processor_applies_updates

_hf_processor_applies_updates(
    prompt_text: str,
    mm_items: MultiModalDataItems,
    hf_processor_mm_kwargs: Mapping[str, object],
    tokenization_kwargs: Mapping[str, object],
) -> bool
Source code in vllm/model_executor/models/siglip.py
def _hf_processor_applies_updates(
    self,
    prompt_text: str,
    mm_items: MultiModalDataItems,
    hf_processor_mm_kwargs: Mapping[str, object],
    tokenization_kwargs: Mapping[str, object],
) -> bool:
    return False

apply

apply(
    prompt: str | list[int],
    mm_data: MultiModalDataDict,
    hf_processor_mm_kwargs: Mapping[str, object],
    tokenization_kwargs: Mapping[str, object] | None = None,
    *,
    mm_uuids: MultiModalUUIDDict | None = None,
) -> MultiModalInputs
Source code in vllm/model_executor/models/siglip.py
def apply(
    self,
    prompt: str | list[int],
    mm_data: MultiModalDataDict,
    hf_processor_mm_kwargs: Mapping[str, object],
    tokenization_kwargs: Mapping[str, object] | None = None,
    *,
    mm_uuids: MultiModalUUIDDict | None = None,
) -> MultiModalInputs:
    if prompt and mm_data:
        raise ValueError(
            "Siglip accepts text-only or image-only inputs, not both! "
            "Image-only inputs means passing an image with an empty text "
            "prompt."
        )

    if mm_data:
        # For multi-modal data, the prompt after processing should
        # only contain the image token
        tokenization_kwargs = {
            **(tokenization_kwargs or {}),
            "add_special_tokens": False,
        }

    return super().apply(
        prompt=prompt,
        mm_data=mm_data,
        hf_processor_mm_kwargs=hf_processor_mm_kwargs,
        tokenization_kwargs=tokenization_kwargs,
        mm_uuids=mm_uuids,
    )

SiglipMultiheadAttentionPoolingHead

Bases: Module

Multihead Attention Pooling.

Source code in vllm/model_executor/models/siglip.py
class SiglipMultiheadAttentionPoolingHead(nn.Module):
    """Multihead Attention Pooling."""

    def __init__(
        self,
        config: SiglipVisionConfig,
        quant_config: QuantizationConfig | None = None,
        prefix: str = "",
    ) -> None:
        super().__init__()

        self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
        # TODO(ChristopherCho): Implement vLLM version of MultiheadAttention
        self.attention = torch.nn.MultiheadAttention(
            config.hidden_size, config.num_attention_heads, batch_first=True
        )
        self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.mlp = SiglipMLP(
            config=config, quant_config=quant_config, prefix=f"{prefix}.mlp"
        )

    def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
        batch_size = hidden_state.size(0)

        probe = self.probe.expand(batch_size, -1, -1)

        hidden_state = self.attention(probe, hidden_state, hidden_state)[0]

        residual = hidden_state
        hidden_state = self.layernorm(hidden_state)
        hidden_state = self.mlp(hidden_state)
        hidden_state += residual

        pooled = hidden_state[:, 0]

        return pooled.unsqueeze(1)

attention instance-attribute

attention = MultiheadAttention(
    hidden_size, num_attention_heads, batch_first=True
)

layernorm instance-attribute

layernorm = LayerNorm(hidden_size, eps=layer_norm_eps)

mlp instance-attribute

mlp = SiglipMLP(
    config=config,
    quant_config=quant_config,
    prefix=f"{prefix}.mlp",
)

probe instance-attribute

probe = Parameter(randn(1, 1, hidden_size))

__init__

__init__(
    config: SiglipVisionConfig,
    quant_config: QuantizationConfig | None = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/siglip.py
def __init__(
    self,
    config: SiglipVisionConfig,
    quant_config: QuantizationConfig | None = None,
    prefix: str = "",
) -> None:
    super().__init__()

    self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
    # TODO(ChristopherCho): Implement vLLM version of MultiheadAttention
    self.attention = torch.nn.MultiheadAttention(
        config.hidden_size, config.num_attention_heads, batch_first=True
    )
    self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
    self.mlp = SiglipMLP(
        config=config, quant_config=quant_config, prefix=f"{prefix}.mlp"
    )

forward

forward(hidden_state: Tensor) -> Tensor
Source code in vllm/model_executor/models/siglip.py
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
    batch_size = hidden_state.size(0)

    probe = self.probe.expand(batch_size, -1, -1)

    hidden_state = self.attention(probe, hidden_state, hidden_state)[0]

    residual = hidden_state
    hidden_state = self.layernorm(hidden_state)
    hidden_state = self.mlp(hidden_state)
    hidden_state += residual

    pooled = hidden_state[:, 0]

    return pooled.unsqueeze(1)

SiglipProcessingInfo

Bases: BaseProcessingInfo

Source code in vllm/model_executor/models/siglip.py
class SiglipProcessingInfo(BaseProcessingInfo):
    def get_hf_config(self):
        return self.ctx.get_hf_config(SiglipConfig)

    def get_vision_encoder_info(self):
        return SiglipEncoderInfo(self.get_hf_config())

    def get_hf_processor(self, **kwargs: object):
        return self.ctx.get_hf_processor(SiglipProcessor, **kwargs)

    def get_supported_mm_limits(self) -> Mapping[str, int | None]:
        return {"image": 1}

    def get_num_image_tokens(
        self,
        *,
        image_width: int,
        image_height: int,
    ) -> int:
        vision_encoder_info = self.get_vision_encoder_info()

        pooler_config = self.ctx.model_config.pooler_config
        assert pooler_config is not None

        return get_num_selected_vision_tokens(
            vision_encoder_info.get_num_image_tokens(
                image_width=image_width,
                image_height=image_height,
            ),
            _get_vision_feature_select_strategy(pooler_config.pooling_type),
        )

    def get_image_size_with_most_features(self) -> ImageSize:
        vision_encoder_info = self.get_vision_encoder_info()
        width = height = vision_encoder_info.get_image_size()
        return ImageSize(width=width, height=height)

    def get_max_image_tokens(self) -> int:
        target_width, target_height = self.get_image_size_with_most_features()

        return self.get_num_image_tokens(
            image_width=target_width, image_height=target_height
        )

get_hf_config

get_hf_config()
Source code in vllm/model_executor/models/siglip.py
def get_hf_config(self):
    return self.ctx.get_hf_config(SiglipConfig)

get_hf_processor

get_hf_processor(**kwargs: object)
Source code in vllm/model_executor/models/siglip.py
def get_hf_processor(self, **kwargs: object):
    return self.ctx.get_hf_processor(SiglipProcessor, **kwargs)

get_image_size_with_most_features

get_image_size_with_most_features() -> ImageSize
Source code in vllm/model_executor/models/siglip.py
def get_image_size_with_most_features(self) -> ImageSize:
    vision_encoder_info = self.get_vision_encoder_info()
    width = height = vision_encoder_info.get_image_size()
    return ImageSize(width=width, height=height)

get_max_image_tokens

get_max_image_tokens() -> int
Source code in vllm/model_executor/models/siglip.py
def get_max_image_tokens(self) -> int:
    target_width, target_height = self.get_image_size_with_most_features()

    return self.get_num_image_tokens(
        image_width=target_width, image_height=target_height
    )

get_num_image_tokens

get_num_image_tokens(
    *, image_width: int, image_height: int
) -> int
Source code in vllm/model_executor/models/siglip.py
def get_num_image_tokens(
    self,
    *,
    image_width: int,
    image_height: int,
) -> int:
    vision_encoder_info = self.get_vision_encoder_info()

    pooler_config = self.ctx.model_config.pooler_config
    assert pooler_config is not None

    return get_num_selected_vision_tokens(
        vision_encoder_info.get_num_image_tokens(
            image_width=image_width,
            image_height=image_height,
        ),
        _get_vision_feature_select_strategy(pooler_config.pooling_type),
    )

get_supported_mm_limits

get_supported_mm_limits() -> Mapping[str, int | None]
Source code in vllm/model_executor/models/siglip.py
def get_supported_mm_limits(self) -> Mapping[str, int | None]:
    return {"image": 1}

get_vision_encoder_info

get_vision_encoder_info()
Source code in vllm/model_executor/models/siglip.py
def get_vision_encoder_info(self):
    return SiglipEncoderInfo(self.get_hf_config())

SiglipTextEmbeddings

Bases: Module

Source code in vllm/model_executor/models/siglip.py
class SiglipTextEmbeddings(nn.Module):
    def __init__(self, config: SiglipTextConfig):
        super().__init__()
        self.config = config

        self.token_embedding = VocabParallelEmbedding(
            config.vocab_size, config.hidden_size
        )

        self.position_embedding = VocabParallelEmbedding(
            config.max_position_embeddings, config.hidden_size
        )

        self.register_buffer(
            "position_ids",
            torch.arange(config.max_position_embeddings).expand((1, -1)),
            persistent=False,
        )

    def forward(
        self,
        input_ids: torch.Tensor | None,
        position_ids: torch.Tensor,
        inputs_embeds: torch.Tensor | None = None,
    ) -> torch.Tensor:
        if inputs_embeds is None:
            inputs_embeds = self.token_embedding(input_ids)

        position_embeddings = self.position_embedding(position_ids)
        embeddings = inputs_embeds + position_embeddings
        return embeddings

config instance-attribute

config = config

position_embedding instance-attribute

position_embedding = VocabParallelEmbedding(
    max_position_embeddings, hidden_size
)

token_embedding instance-attribute

token_embedding = VocabParallelEmbedding(
    vocab_size, hidden_size
)

__init__

__init__(config: SiglipTextConfig)
Source code in vllm/model_executor/models/siglip.py
def __init__(self, config: SiglipTextConfig):
    super().__init__()
    self.config = config

    self.token_embedding = VocabParallelEmbedding(
        config.vocab_size, config.hidden_size
    )

    self.position_embedding = VocabParallelEmbedding(
        config.max_position_embeddings, config.hidden_size
    )

    self.register_buffer(
        "position_ids",
        torch.arange(config.max_position_embeddings).expand((1, -1)),
        persistent=False,
    )

forward

forward(
    input_ids: Tensor | None,
    position_ids: Tensor,
    inputs_embeds: Tensor | None = None,
) -> Tensor
Source code in vllm/model_executor/models/siglip.py
def forward(
    self,
    input_ids: torch.Tensor | None,
    position_ids: torch.Tensor,
    inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor:
    if inputs_embeds is None:
        inputs_embeds = self.token_embedding(input_ids)

    position_embeddings = self.position_embedding(position_ids)
    embeddings = inputs_embeds + position_embeddings
    return embeddings

SiglipTextTransformer

Bases: Module

Source code in vllm/model_executor/models/siglip.py
class SiglipTextTransformer(nn.Module):
    def __init__(
        self,
        config: SiglipTextConfig,
        quant_config: QuantizationConfig | None = None,
        *,
        prefix: str = "",
    ) -> None:
        super().__init__()

        self.config = config
        embed_dim = config.hidden_size

        self.embeddings = SiglipTextEmbeddings(config)

        self.encoder = SiglipEncoder(
            config=config,
            quant_config=quant_config,
            prefix=f"{prefix}.encoder",
        )

        self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
        self.head = nn.Linear(embed_dim, config.projection_size)

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.embeddings.token_embedding(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor | None,
        position_ids: torch.Tensor,
        inputs_embeds: torch.Tensor | None = None,
    ) -> torch.Tensor:
        hidden_states = self.embeddings(input_ids, position_ids, inputs_embeds)

        last_hidden_state = self.encoder(
            inputs_embeds=hidden_states, return_all_hidden_states=False
        )

        last_hidden_state = self.final_layer_norm(last_hidden_state)

        return last_hidden_state

    def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
        ]
        params_dict = dict(self.named_parameters())
        loaded_params: set[str] = set()

        for name, loaded_weight in weights:
            for param_name, weight_name, shard_id in stacked_params_mapping:
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader", default_weight_loader)
                weight_loader(param, loaded_weight)
            loaded_params.add(name)
        return loaded_params

config instance-attribute

config = config

embeddings instance-attribute

embeddings = SiglipTextEmbeddings(config)

encoder instance-attribute

encoder = SiglipEncoder(
    config=config,
    quant_config=quant_config,
    prefix=f"{prefix}.encoder",
)

final_layer_norm instance-attribute

final_layer_norm = LayerNorm(embed_dim, eps=layer_norm_eps)

head instance-attribute

head = Linear(embed_dim, projection_size)

__init__

__init__(
    config: SiglipTextConfig,
    quant_config: QuantizationConfig | None = None,
    *,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/siglip.py
def __init__(
    self,
    config: SiglipTextConfig,
    quant_config: QuantizationConfig | None = None,
    *,
    prefix: str = "",
) -> None:
    super().__init__()

    self.config = config
    embed_dim = config.hidden_size

    self.embeddings = SiglipTextEmbeddings(config)

    self.encoder = SiglipEncoder(
        config=config,
        quant_config=quant_config,
        prefix=f"{prefix}.encoder",
    )

    self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
    self.head = nn.Linear(embed_dim, config.projection_size)

forward

forward(
    input_ids: Tensor | None,
    position_ids: Tensor,
    inputs_embeds: Tensor | None = None,
) -> Tensor
Source code in vllm/model_executor/models/siglip.py
def forward(
    self,
    input_ids: torch.Tensor | None,
    position_ids: torch.Tensor,
    inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor:
    hidden_states = self.embeddings(input_ids, position_ids, inputs_embeds)

    last_hidden_state = self.encoder(
        inputs_embeds=hidden_states, return_all_hidden_states=False
    )

    last_hidden_state = self.final_layer_norm(last_hidden_state)

    return last_hidden_state

get_input_embeddings

get_input_embeddings(input_ids: Tensor) -> Tensor
Source code in vllm/model_executor/models/siglip.py
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
    return self.embeddings.token_embedding(input_ids)

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/siglip.py
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
    stacked_params_mapping = [
        # (param_name, shard_name, shard_id)
        ("qkv_proj", "q_proj", "q"),
        ("qkv_proj", "k_proj", "k"),
        ("qkv_proj", "v_proj", "v"),
    ]
    params_dict = dict(self.named_parameters())
    loaded_params: set[str] = set()

    for name, loaded_weight in weights:
        for param_name, weight_name, shard_id in stacked_params_mapping:
            if weight_name not in name:
                continue
            name = name.replace(weight_name, param_name)
            param = params_dict[name]
            weight_loader = param.weight_loader
            weight_loader(param, loaded_weight, shard_id)
            break
        else:
            param = params_dict[name]
            weight_loader = getattr(param, "weight_loader", default_weight_loader)
            weight_loader(param, loaded_weight)
        loaded_params.add(name)
    return loaded_params

SiglipVisionEmbeddings

Bases: Module

Source code in vllm/model_executor/models/siglip.py
class SiglipVisionEmbeddings(nn.Module):
    def __init__(self, config: SiglipVisionConfig):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.image_size = config.image_size
        self.patch_size = config.patch_size

        self.patch_embedding = nn.Conv2d(
            in_channels=config.num_channels,
            out_channels=self.embed_dim,
            kernel_size=self.patch_size,
            stride=self.patch_size,
            padding="valid",
        )

        self.num_patches = (self.image_size // self.patch_size) ** 2
        self.num_positions = self.num_patches
        self.position_embedding = VocabParallelEmbedding(
            self.num_positions, self.embed_dim
        )
        self.register_buffer(
            "position_ids",
            torch.arange(self.num_positions, dtype=torch.int64).expand((1, -1)),
            persistent=False,
        )

    def interpolate_pos_encoding(
        self, embeddings: torch.Tensor, height: int, width: int
    ) -> torch.Tensor:
        """
        This method is an adapted method for SigLIP (due to SigLIP not having
        class embedding unlike other ViTs) that allows the model to interpolate
        the pre-trained position encodings such that it can be usable on higher
        resolution images.

        Source:
        https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
        """
        position_embeddings = self.position_embedding.weight.unsqueeze(0)
        num_patches = embeddings.shape[1]
        num_positions = position_embeddings.shape[1]
        if num_patches == num_positions and height == width:
            return position_embeddings

        dim = embeddings.shape[-1]
        height = height // self.patch_size
        width = width // self.patch_size
        # we add a small number to avoid floating point error
        # in the interpolation
        # see discussion at https://github.com/facebookresearch/dino/issues/8
        height, width = height + 0.1, width + 0.1

        patch_pos_embed = position_embeddings.reshape(
            1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim
        )
        patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
        patch_pos_embed = nn.functional.interpolate(
            patch_pos_embed,
            scale_factor=(
                height / math.sqrt(num_positions),
                width / math.sqrt(num_positions),
            ),
            mode="bicubic",
            align_corners=False,
        )
        if (
            int(height) != patch_pos_embed.shape[-2]
            or int(width) != patch_pos_embed.shape[-1]
        ):
            raise ValueError(
                "Width or height does not match with "
                "the interpolated position embeddings"
            )

        patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
        return patch_pos_embed

    def forward(
        self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False
    ) -> torch.Tensor:
        _, _, height, width = pixel_values.shape
        target_dtype = self.patch_embedding.weight.dtype
        patch_embeds = self.patch_embedding(
            pixel_values.to(dtype=target_dtype)
        )  # shape = [*, width, grid, grid]
        embeddings = patch_embeds.flatten(2).transpose(1, 2)

        if interpolate_pos_encoding:
            embeddings += self.interpolate_pos_encoding(embeddings, height, width)
        else:
            embeddings += self.position_embedding(self.position_ids)
        return embeddings

config instance-attribute

config = config

embed_dim instance-attribute

embed_dim = hidden_size

image_size instance-attribute

image_size = image_size

num_patches instance-attribute

num_patches = (image_size // patch_size) ** 2

num_positions instance-attribute

num_positions = num_patches

patch_embedding instance-attribute

patch_embedding = Conv2d(
    in_channels=num_channels,
    out_channels=embed_dim,
    kernel_size=patch_size,
    stride=patch_size,
    padding="valid",
)

patch_size instance-attribute

patch_size = patch_size

position_embedding instance-attribute

position_embedding = VocabParallelEmbedding(
    num_positions, embed_dim
)

__init__

__init__(config: SiglipVisionConfig)
Source code in vllm/model_executor/models/siglip.py
def __init__(self, config: SiglipVisionConfig):
    super().__init__()
    self.config = config
    self.embed_dim = config.hidden_size
    self.image_size = config.image_size
    self.patch_size = config.patch_size

    self.patch_embedding = nn.Conv2d(
        in_channels=config.num_channels,
        out_channels=self.embed_dim,
        kernel_size=self.patch_size,
        stride=self.patch_size,
        padding="valid",
    )

    self.num_patches = (self.image_size // self.patch_size) ** 2
    self.num_positions = self.num_patches
    self.position_embedding = VocabParallelEmbedding(
        self.num_positions, self.embed_dim
    )
    self.register_buffer(
        "position_ids",
        torch.arange(self.num_positions, dtype=torch.int64).expand((1, -1)),
        persistent=False,
    )

forward

forward(
    pixel_values: Tensor,
    interpolate_pos_encoding: bool = False,
) -> Tensor
Source code in vllm/model_executor/models/siglip.py
def forward(
    self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False
) -> torch.Tensor:
    _, _, height, width = pixel_values.shape
    target_dtype = self.patch_embedding.weight.dtype
    patch_embeds = self.patch_embedding(
        pixel_values.to(dtype=target_dtype)
    )  # shape = [*, width, grid, grid]
    embeddings = patch_embeds.flatten(2).transpose(1, 2)

    if interpolate_pos_encoding:
        embeddings += self.interpolate_pos_encoding(embeddings, height, width)
    else:
        embeddings += self.position_embedding(self.position_ids)
    return embeddings

interpolate_pos_encoding

interpolate_pos_encoding(
    embeddings: Tensor, height: int, width: int
) -> Tensor

This method is an adapted method for SigLIP (due to SigLIP not having class embedding unlike other ViTs) that allows the model to interpolate the pre-trained position encodings such that it can be usable on higher resolution images.

Source: https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174

Source code in vllm/model_executor/models/siglip.py
def interpolate_pos_encoding(
    self, embeddings: torch.Tensor, height: int, width: int
) -> torch.Tensor:
    """
    This method is an adapted method for SigLIP (due to SigLIP not having
    class embedding unlike other ViTs) that allows the model to interpolate
    the pre-trained position encodings such that it can be usable on higher
    resolution images.

    Source:
    https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
    """
    position_embeddings = self.position_embedding.weight.unsqueeze(0)
    num_patches = embeddings.shape[1]
    num_positions = position_embeddings.shape[1]
    if num_patches == num_positions and height == width:
        return position_embeddings

    dim = embeddings.shape[-1]
    height = height // self.patch_size
    width = width // self.patch_size
    # we add a small number to avoid floating point error
    # in the interpolation
    # see discussion at https://github.com/facebookresearch/dino/issues/8
    height, width = height + 0.1, width + 0.1

    patch_pos_embed = position_embeddings.reshape(
        1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim
    )
    patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
    patch_pos_embed = nn.functional.interpolate(
        patch_pos_embed,
        scale_factor=(
            height / math.sqrt(num_positions),
            width / math.sqrt(num_positions),
        ),
        mode="bicubic",
        align_corners=False,
    )
    if (
        int(height) != patch_pos_embed.shape[-2]
        or int(width) != patch_pos_embed.shape[-1]
    ):
        raise ValueError(
            "Width or height does not match with "
            "the interpolated position embeddings"
        )

    patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
    return patch_pos_embed

SiglipVisionModel

Bases: Module

Source code in vllm/model_executor/models/siglip.py
class SiglipVisionModel(nn.Module):
    config_class = SiglipVisionConfig
    main_input_name = "pixel_values"

    def __init__(
        self,
        config: SiglipVisionConfig,
        quant_config: QuantizationConfig | None = None,
        *,
        num_hidden_layers_override: int | None = None,
        require_post_norm: bool | None = None,
        prefix: str = "",
    ) -> None:
        super().__init__()

        self.vision_model = SiglipVisionTransformer(
            config,
            quant_config,
            num_hidden_layers_override=num_hidden_layers_override,
            require_post_norm=require_post_norm,
            prefix=f"{prefix}.vision_model",
        )

    def get_input_embeddings(self) -> nn.Module:
        return self.vision_model.embeddings.patch_embedding

    @property
    def dtype(self):
        return self.vision_model.dtype

    @property
    def device(self):
        return self.vision_model.device

    def forward(
        self,
        pixel_values: torch.Tensor,
        interpolate_pos_encoding: bool = False,
        select_layers: list[int] | None = None,
        feature_select_strategy: VisionFeatureSelectStrategy | None = None,
    ) -> torch.Tensor:
        return self.vision_model(
            pixel_values=pixel_values,
            interpolate_pos_encoding=interpolate_pos_encoding,
            select_layers=select_layers,
            feature_select_strategy=feature_select_strategy,
        )

    def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
        ]
        params_dict = dict(self.named_parameters())
        loaded_params: set[str] = set()
        layer_count = len(self.vision_model.encoder.layers)

        for name, loaded_weight in weights:
            # post_layernorm is optional in SiglipVisionModel
            if (
                name.startswith("vision_model.post_layernorm")
                and self.vision_model.post_layernorm is None
            ):
                continue

            # omit layers when num_hidden_layers_override is set
            if name.startswith("vision_model.encoder.layers"):
                layer_idx = int(name.split(".")[3])
                if layer_idx >= layer_count:
                    continue

            # Check if this is a scale parameter that needs remapping first
            if name.endswith((".k_scale", ".v_scale", ".q_scale", ".prob_scale")):
                # Try to remap the scale name first
                remapped_name = maybe_remap_kv_scale_name(name, params_dict)
                if remapped_name is not None and remapped_name in params_dict:
                    # Successfully remapped, use the remapped name
                    param = params_dict[remapped_name]
                    weight_loader = getattr(
                        param, "weight_loader", default_weight_loader
                    )
                    weight_loader(param, loaded_weight)
                    loaded_params.add(remapped_name)
                    continue
                # If remapping failed, continue with normal processing

            for param_name, weight_name, shard_id in stacked_params_mapping:
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)

                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader", default_weight_loader)
                weight_loader(param, loaded_weight)
            loaded_params.add(name)
        return loaded_params

config_class class-attribute instance-attribute

config_class = SiglipVisionConfig

device property

device

dtype property

dtype

main_input_name class-attribute instance-attribute

main_input_name = 'pixel_values'

vision_model instance-attribute

vision_model = SiglipVisionTransformer(
    config,
    quant_config,
    num_hidden_layers_override=num_hidden_layers_override,
    require_post_norm=require_post_norm,
    prefix=f"{prefix}.vision_model",
)

__init__

__init__(
    config: SiglipVisionConfig,
    quant_config: QuantizationConfig | None = None,
    *,
    num_hidden_layers_override: int | None = None,
    require_post_norm: bool | None = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/siglip.py
def __init__(
    self,
    config: SiglipVisionConfig,
    quant_config: QuantizationConfig | None = None,
    *,
    num_hidden_layers_override: int | None = None,
    require_post_norm: bool | None = None,
    prefix: str = "",
) -> None:
    super().__init__()

    self.vision_model = SiglipVisionTransformer(
        config,
        quant_config,
        num_hidden_layers_override=num_hidden_layers_override,
        require_post_norm=require_post_norm,
        prefix=f"{prefix}.vision_model",
    )

forward

forward(
    pixel_values: Tensor,
    interpolate_pos_encoding: bool = False,
    select_layers: list[int] | None = None,
    feature_select_strategy: VisionFeatureSelectStrategy
    | None = None,
) -> Tensor
Source code in vllm/model_executor/models/siglip.py
def forward(
    self,
    pixel_values: torch.Tensor,
    interpolate_pos_encoding: bool = False,
    select_layers: list[int] | None = None,
    feature_select_strategy: VisionFeatureSelectStrategy | None = None,
) -> torch.Tensor:
    return self.vision_model(
        pixel_values=pixel_values,
        interpolate_pos_encoding=interpolate_pos_encoding,
        select_layers=select_layers,
        feature_select_strategy=feature_select_strategy,
    )

get_input_embeddings

get_input_embeddings() -> Module
Source code in vllm/model_executor/models/siglip.py
def get_input_embeddings(self) -> nn.Module:
    return self.vision_model.embeddings.patch_embedding

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/siglip.py
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
    stacked_params_mapping = [
        # (param_name, shard_name, shard_id)
        ("qkv_proj", "q_proj", "q"),
        ("qkv_proj", "k_proj", "k"),
        ("qkv_proj", "v_proj", "v"),
    ]
    params_dict = dict(self.named_parameters())
    loaded_params: set[str] = set()
    layer_count = len(self.vision_model.encoder.layers)

    for name, loaded_weight in weights:
        # post_layernorm is optional in SiglipVisionModel
        if (
            name.startswith("vision_model.post_layernorm")
            and self.vision_model.post_layernorm is None
        ):
            continue

        # omit layers when num_hidden_layers_override is set
        if name.startswith("vision_model.encoder.layers"):
            layer_idx = int(name.split(".")[3])
            if layer_idx >= layer_count:
                continue

        # Check if this is a scale parameter that needs remapping first
        if name.endswith((".k_scale", ".v_scale", ".q_scale", ".prob_scale")):
            # Try to remap the scale name first
            remapped_name = maybe_remap_kv_scale_name(name, params_dict)
            if remapped_name is not None and remapped_name in params_dict:
                # Successfully remapped, use the remapped name
                param = params_dict[remapped_name]
                weight_loader = getattr(
                    param, "weight_loader", default_weight_loader
                )
                weight_loader(param, loaded_weight)
                loaded_params.add(remapped_name)
                continue
            # If remapping failed, continue with normal processing

        for param_name, weight_name, shard_id in stacked_params_mapping:
            if weight_name not in name:
                continue
            name = name.replace(weight_name, param_name)

            param = params_dict[name]
            weight_loader = param.weight_loader
            weight_loader(param, loaded_weight, shard_id)
            break
        else:
            param = params_dict[name]
            weight_loader = getattr(param, "weight_loader", default_weight_loader)
            weight_loader(param, loaded_weight)
        loaded_params.add(name)
    return loaded_params

SiglipVisionTransformer

Bases: Module

Source code in vllm/model_executor/models/siglip.py
class SiglipVisionTransformer(nn.Module):
    def __init__(
        self,
        config: SiglipVisionConfig,
        quant_config: QuantizationConfig | None = None,
        *,
        num_hidden_layers_override: int | None = None,
        require_post_norm: bool | None = None,
        prefix: str = "",
    ) -> None:
        super().__init__()

        self.config = config
        embed_dim = config.hidden_size

        self.embeddings = SiglipVisionEmbeddings(config)

        self.encoder = SiglipEncoder(
            config,
            quant_config=quant_config,
            num_hidden_layers_override=num_hidden_layers_override,
            prefix=f"{prefix}.encoder",
        )

        num_hidden_layers = config.num_hidden_layers
        if len(self.encoder.layers) > config.num_hidden_layers:
            raise ValueError(
                f"The original encoder only has {num_hidden_layers} "
                f"layers, but you requested {len(self.encoder.layers)} layers."
            )

        # If possible, skip post_layernorm to conserve memory
        if require_post_norm is None:
            require_post_norm = len(self.encoder.layers) == num_hidden_layers

        if require_post_norm:
            self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
        else:
            self.post_layernorm = None

        self.use_head = (
            True if not hasattr(config, "vision_use_head") else config.vision_use_head
        )
        if self.use_head:
            self.head = SiglipMultiheadAttentionPoolingHead(
                config=config,
                quant_config=quant_config,
                prefix=f"{prefix}.head",
            )

    @property
    def dtype(self):
        return next(self.parameters()).dtype

    @property
    def device(self):
        return next(self.parameters()).device

    def forward(
        self,
        pixel_values: torch.Tensor,
        *,
        interpolate_pos_encoding: bool = False,
        select_layers: list[int] | None = None,
        feature_select_strategy: VisionFeatureSelectStrategy | None = None,
    ) -> torch.Tensor:
        hidden_states = self.embeddings(
            pixel_values,
            interpolate_pos_encoding=interpolate_pos_encoding,
        )
        # Produces either the last layer output or all of the hidden states,
        # depending on if we have select_layers or not
        encoder_outputs = self.encoder(
            inputs_embeds=hidden_states,
            return_all_hidden_states=select_layers is not None,
        )

        if self.post_layernorm is not None:
            encoder_outputs = self.post_layernorm(encoder_outputs)

        if self.use_head:
            encoder_outputs = self.head(encoder_outputs)

        # stacks feature layers if needed
        encoder_outputs = resolve_visual_encoder_outputs(
            encoder_outputs,
            None,
            select_layers=select_layers,
            max_possible_layers=self.config.num_hidden_layers,
            feature_select_strategy=feature_select_strategy,
        )

        return encoder_outputs

    def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
        ]
        params_dict = dict(self.named_parameters())
        loaded_params: set[str] = set()
        layer_count = len(self.encoder.layers)

        for name, loaded_weight in weights:
            # post_layernorm is not needed in SiglipVisionTransformer
            if name.startswith("post_layernorm") and self.post_layernorm is None:
                continue

            # omit layers when num_hidden_layers_override is set
            if name.startswith("encoder.layers"):
                layer_idx = int(name.split(".")[2])
                if layer_idx >= layer_count:
                    continue

            for param_name, weight_name, shard_id in stacked_params_mapping:
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader", default_weight_loader)
                weight_loader(param, loaded_weight)
            loaded_params.add(name)
        return loaded_params

config instance-attribute

config = config

device property

device

dtype property

dtype

embeddings instance-attribute

embeddings = SiglipVisionEmbeddings(config)

encoder instance-attribute

encoder = SiglipEncoder(
    config,
    quant_config=quant_config,
    num_hidden_layers_override=num_hidden_layers_override,
    prefix=f"{prefix}.encoder",
)

head instance-attribute

head = SiglipMultiheadAttentionPoolingHead(
    config=config,
    quant_config=quant_config,
    prefix=f"{prefix}.head",
)

post_layernorm instance-attribute

post_layernorm = LayerNorm(embed_dim, eps=layer_norm_eps)

use_head instance-attribute

use_head = (
    True
    if not hasattr(config, "vision_use_head")
    else vision_use_head
)

__init__

__init__(
    config: SiglipVisionConfig,
    quant_config: QuantizationConfig | None = None,
    *,
    num_hidden_layers_override: int | None = None,
    require_post_norm: bool | None = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/siglip.py
def __init__(
    self,
    config: SiglipVisionConfig,
    quant_config: QuantizationConfig | None = None,
    *,
    num_hidden_layers_override: int | None = None,
    require_post_norm: bool | None = None,
    prefix: str = "",
) -> None:
    super().__init__()

    self.config = config
    embed_dim = config.hidden_size

    self.embeddings = SiglipVisionEmbeddings(config)

    self.encoder = SiglipEncoder(
        config,
        quant_config=quant_config,
        num_hidden_layers_override=num_hidden_layers_override,
        prefix=f"{prefix}.encoder",
    )

    num_hidden_layers = config.num_hidden_layers
    if len(self.encoder.layers) > config.num_hidden_layers:
        raise ValueError(
            f"The original encoder only has {num_hidden_layers} "
            f"layers, but you requested {len(self.encoder.layers)} layers."
        )

    # If possible, skip post_layernorm to conserve memory
    if require_post_norm is None:
        require_post_norm = len(self.encoder.layers) == num_hidden_layers

    if require_post_norm:
        self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
    else:
        self.post_layernorm = None

    self.use_head = (
        True if not hasattr(config, "vision_use_head") else config.vision_use_head
    )
    if self.use_head:
        self.head = SiglipMultiheadAttentionPoolingHead(
            config=config,
            quant_config=quant_config,
            prefix=f"{prefix}.head",
        )

forward

forward(
    pixel_values: Tensor,
    *,
    interpolate_pos_encoding: bool = False,
    select_layers: list[int] | None = None,
    feature_select_strategy: VisionFeatureSelectStrategy
    | None = None,
) -> Tensor
Source code in vllm/model_executor/models/siglip.py
def forward(
    self,
    pixel_values: torch.Tensor,
    *,
    interpolate_pos_encoding: bool = False,
    select_layers: list[int] | None = None,
    feature_select_strategy: VisionFeatureSelectStrategy | None = None,
) -> torch.Tensor:
    hidden_states = self.embeddings(
        pixel_values,
        interpolate_pos_encoding=interpolate_pos_encoding,
    )
    # Produces either the last layer output or all of the hidden states,
    # depending on if we have select_layers or not
    encoder_outputs = self.encoder(
        inputs_embeds=hidden_states,
        return_all_hidden_states=select_layers is not None,
    )

    if self.post_layernorm is not None:
        encoder_outputs = self.post_layernorm(encoder_outputs)

    if self.use_head:
        encoder_outputs = self.head(encoder_outputs)

    # stacks feature layers if needed
    encoder_outputs = resolve_visual_encoder_outputs(
        encoder_outputs,
        None,
        select_layers=select_layers,
        max_possible_layers=self.config.num_hidden_layers,
        feature_select_strategy=feature_select_strategy,
    )

    return encoder_outputs

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/siglip.py
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
    stacked_params_mapping = [
        # (param_name, shard_name, shard_id)
        ("qkv_proj", "q_proj", "q"),
        ("qkv_proj", "k_proj", "k"),
        ("qkv_proj", "v_proj", "v"),
    ]
    params_dict = dict(self.named_parameters())
    loaded_params: set[str] = set()
    layer_count = len(self.encoder.layers)

    for name, loaded_weight in weights:
        # post_layernorm is not needed in SiglipVisionTransformer
        if name.startswith("post_layernorm") and self.post_layernorm is None:
            continue

        # omit layers when num_hidden_layers_override is set
        if name.startswith("encoder.layers"):
            layer_idx = int(name.split(".")[2])
            if layer_idx >= layer_count:
                continue

        for param_name, weight_name, shard_id in stacked_params_mapping:
            if weight_name not in name:
                continue
            name = name.replace(weight_name, param_name)
            param = params_dict[name]
            weight_loader = param.weight_loader
            weight_loader(param, loaded_weight, shard_id)
            break
        else:
            param = params_dict[name]
            weight_loader = getattr(param, "weight_loader", default_weight_loader)
            weight_loader(param, loaded_weight)
        loaded_params.add(name)
    return loaded_params

_get_vision_feature_select_strategy

_get_vision_feature_select_strategy(
    pooling_type: str,
) -> VisionFeatureSelectStrategyStr
Source code in vllm/model_executor/models/siglip.py
def _get_vision_feature_select_strategy(
    pooling_type: str,
) -> VisionFeatureSelectStrategyStr:
    try:
        return _POOLING_TYPE_TO_STRATEGY[pooling_type]
    except KeyError:
        raise ValueError(
            f"No feature selection strategy is defined for "
            f"pooling_type: {pooling_type!r}"
        ) from None